Balancing Ecology and Livelihoods in Waste Management: A Systematic Review of Sustainable Development Strategies
- Keywords:
- waste, development, ecological fulfillment, livelihood
- Abstract
-
Waste management is a critical aspect that requires careful handling to maintain ecological balance. This study aims to analyze how ecological fulfillment and human livelihood can coexist through efficient and sustainable waste management. Method: This study employs a Systematic Literature Review (SLR) approach using data from the Scopus database to examine the concept of harmonizing ecology and livelihoods. Results: The findings indicate that harmonizing these two aspects requires a dual approach. First, technological interventions, such as bioremediation using microbes and heavy metal stabilization, are essential for the ecological restoration of polluted areas. Second, socio-economic strategies, specifically the "integrated conservation and development model," are crucial for linking waste processing to economic incentives. Practical implications: Waste management policies cannot rely solely on technical disposal methods. Instead, they must adopt an ecosystem service approach that transforms waste into an economic resource, ensuring that community livelihoods are improved and environmental sustainability is maintained.
- Author Biography
- References
-
Baral, N. (2012). Empirical analysis of factors explaining local governing bodies’ trust for administering agencies in community-based conservation. Journal of Environmental Management, 103, 41–50. https://doi.org/https://doi.org/10.1016/j.jenvman.2012.02.031
Birben, Ü. (2019). The effectiveness of protected areas in biodiversity conservation: The case of Turkey. CERNE, 25, 424–438. https://doi.org/10.1590/01047760201925042644
Das, R. C. (2017). Social, health, and environmental infrastructures for economic growth. In Social, Health, and Environmental Infrastructures for Economic Growth. IGI Global. https://doi.org/10.4018/978-1-5225-2364-2
Duan, W., & Wen, Y. (2017). Impacts of protected areas on local livelihoods: Evidence of giant panda biosphere reserves in Sichuan Province, China. Land Use Policy, 68, 168–178. https://doi.org/https://doi.org/10.1016/j.landusepol.2017.07.015
Fang, J., Dong, J., Li, C., Chen, H., Wang, L., Lyu, T., He, H., & Liu, J. (2021). Response of microbial community composition and function to emergent plant rhizosphere of a constructed wetland in northern China. Applied Soil Ecology, 168, 104141. https://doi.org/https://doi.org/10.1016/j.apsoil.2021.104141
França, C. S. S., Kyei, E. O., Aragundi, G. S., & Rutt, R. L. (2019). Making sense of conservation behaviours in Mustang, Nepal. Banko Janakari, 29(1), 33–42. https://doi.org/10.3126/banko.v29i1.25153
Fu, B., Wu, X., Wang, Z., Wu, X., & Wang, S. (2022). Coupling human and natural systems for sustainability: experience from China’s Loess Plateau. Earth System Dynamics, 13(2), 795–808. https://doi.org/10.5194/esd-13-795-2022
Ghufran, M., Khan, K. I. A., Musarat, M. A., & Alaloul, W. (2024). Circular economy in developing countries for sustainable development: A review. Journal of Infrastructure, Policy and Development, 8, 5640. https://doi.org/10.24294/jipd5640
Han, L., Qian, L., Liu, R., Chen, M., Yan, J., & Hu, Q. (2017). Lead adsorption by biochar under the elevated competition of cadmium and aluminum. Scientific Reports, 7(1), 2264. https://doi.org/10.1038/s41598-017-02353-4
HE, S., & MIN, Q. (2023). Conservation-compatible livelihoods in protected areas: Concept and the implementation approach. Journal of Natural Resources, 38(4), 862. https://doi.org/10.31497/zrzyxb.20230402
Ibekwe, A. M., Ma, J., Murinda, S., & Reddy, G. B. (2016). Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste. Science of The Total Environment, 544, 68–76. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.11.139
Izah, S. C., Ogwu, M. C., & Salimon, S. S. (2025). Principles of Sustainable Development and Environmental Management. In Environmental Science and Engineering: Vol. Part F513 (pp. 29–63). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-85327-2_2
Kadam, D. D. (2024). Community participation in solid waste management in rural Maharashtra. In Solid Waste Management for Rural Regions (pp. 69–100). IGI Global. https://doi.org/10.4018/979-8-3693-8527-2.ch005
Kralj, D. (2008). Recycling and environmental waste management in constructions. WSEAS Transactions on Environment and Development, 4(5), 389–398. https://www.scopus.com/inward/record.uri?eid=2-s2.0-46449131970&partnerID=40&md5=800838f038f7417133cadc7eed8b10cc
Lee, Y. Y., & Noor, Z. M. (2006). A study on construction waste management of a refurbishment project in Kuala Lumpur. Malaysian Journal of Science, 25(2), 1–18. https://www.scopus.com/inward/record.uri?eid=2-s2.0-34247501226&partnerID=40&md5=3da32cbd20ecbfe3b0bf3203689665fb
Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466–478. https://doi.org/https://doi.org/10.1016/j.chemosphere.2017.03.072
Li, Y., Zhu, G., Ng, W. J., & Tan, S. K. (2014). A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism. Science of The Total Environment, 468–469, 908–932. https://doi.org/https://doi.org/10.1016/j.scitotenv.2013.09.018
Liu, Y., Tong, T., Li, B., & Xie, S. (2019). Dynamics of bacterial communities in a river water treatment wetland. Annals of Microbiology, 69(6), 637–645. https://doi.org/10.1007/s13213-019-01454-x
Marx, S. (2015). Governing the Nexus for Sustainability. Change and Adaptation in Socio-Ecological Systems, 2. https://doi.org/10.1515/cass-2015-0008
Mbasabire, P., Murindangabo, Y. T., Brom, J., Byukusenge, P., Ufitikirezi, J. de D. M., Uwihanganye, J., Umurungi, S. N., Ntezimana, M. G., Karimunda, K., & Bwimba, R. (2025). Remediation of Heavy Metal-Contaminated Soils Using Phosphate-Enriched Sewage Sludge Biochar. Sustainability (Switzerland), 17(16). https://doi.org/10.3390/su17167345
Mngomezulu, S., Mbanga, S., & Adeniran, A. (2024). The factors influencing waste management for economic development—the perspective of Nelson Mandela bay municipality residents. Frontiers in Sustainability, 5. https://doi.org/10.3389/frsus.2024.1469207
Molla, A. S., Sher, W., Tang, W., Bahar, M. M., & Bekele, D. N. (2024). Composite building materials and construction and demolition waste (C&DW): ecotoxicological perspectives. In Sustainability and Toxicity of Building Materials (pp. 601–625). Elsevier. https://doi.org/10.1016/B978-0-323-98336-5.00027-3
Pasakhala, B., Rucha, G., & Kotru, R. (2017). Integrating Conservation and Development in Transboundary Landscapes: Looking Back to Move Forward.
Qiu, Y., Zhang, Z., Li, Z., Li, J., Feng, Y., & Liu, G. (2022). Enhanced performance and microbial interactions of shallow wetland bed coupling with functional biocathode microbial electrochemical system (MES). Science of the Total Environment, 838(April), 156383. https://doi.org/10.1016/j.scitotenv.2022.156383
Ramadan, B. S., Miftahadi, M. F., Ikhlas, N., Fujianti, L. N., Rachman, I., & Matsumoto, T. (2023). Green strategies for waste to energy. In Sustainable and Circular Management of Resources and Waste Towards a Green Deal (pp. 387–398). Elsevier. https://doi.org/10.1016/B978-0-323-95278-1.00009-7
Saeed, T., Al-Muyeed, A., Afrin, R., Rahman, H., & Sun, G. (2014). Pollutant removal from municipal wastewater employing baffled subsurface flow and integrated surface flow-floating treatment wetlands. Journal of Environmental Sciences. https://doi.org/10.1016/S1001-0742(13)60476-3
Schreckenberg, K., Camargo, I., Withnall, K., Corrigan, C., Franks, P., Roe, D., Scherl, L., & Richardson, V. (2010). Social Assessment of Conservation. Initiatives: A review of rapid methodologies.
Schuett, M. A., & Dahal, S. (2016). Local Perspectives on Benefits of an Integrated Conservation and Development Project : The Annapurna Conservation Area in Nepal. 8(July), 138–146. https://doi.org/10.5897/IJBC2016.0958
Shajidha, H., & Mortula, M. M. (2025). Sustainable waste management in the construction industry. Frontiers in Sustainable Cities, 7. https://doi.org/10.3389/frsc.2025.1582239
Srivastava, P., Abbassi, R., Garaniya, V., Lewis, T., & Yadav, A. K. (2020). Performance of pilot-scale horizontal subsurface flow constructed wetland coupled with a microbial fuel cell for treating wastewater. Journal of Water Process Engineering, 33, 100994. https://doi.org/https://doi.org/10.1016/j.jwpe.2019.100994
Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191–215. https://doi.org/10.1007/s11157-020-09523-3
Wu, G., Wang, L., Yang, R., Hou, W., Zhang, S., Guo, X., & Zhao, W. (2022). Pollution characteristics and risk assessment of heavy metals in the soil of a construction waste landfill site. Ecological Informatics, 70(May), 101700. https://doi.org/10.1016/j.ecoinf.2022.101700
Wu, H., Weng, X., Li, Y., Liu, S., Ma, J., Chen, R., Yu, B., & Bao, Z. (2025). Critical construction waste minimization strategies for a circular economy in developing countries: A contractor’s perspective in China. International Journal of Environmental Science and Technology, 22(12), 11211–11228. https://doi.org/10.1007/s13762-024-06150-1
Xu, F., Cao, F., Kong, Q., Zhou, L., Yuan, Q., Zhu, Y., Wang, Q., Du, Y., & Wang, Z. (2018). Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell. Chemical Engineering Journal, 339, 479–486. https://doi.org/https://doi.org/10.1016/j.cej.2018.02.003
Yuan, H., Lu, T., Wang, Y., Chen, Y., & Lei, T. (2016). Sewage sludge biochar: Nutrient composition and its effect on the leaching of soil nutrients. Geoderma, 267, 17–23. https://doi.org/https://doi.org/10.1016/j.geoderma.2015.12.020
Zhang, D., Yan, K., Liu, Y., & Naidu, R. (2022). Effects of Phosphate, Red Mud, and Biochar on As, Cd, and Cu Immobilization and Enzymatic Activity in a Co-Contaminated Soil. In Processes (Vol. 10, Issue 6, p. 1127). https://doi.org/10.3390/pr10061127
- Downloads
- Published
- 2026-02-15
- Section
- Articles
- License
-
Copyright (c) 2026 GeoHuman: People, Place, and Power

This work is licensed under a Creative Commons Attribution 4.0 International License.
